Grobe Fehler und Konfidenzintervall

by gf, Friday, September 20, 2019, 20:27 (26 days ago) @ Micha

Ich hatte diese Frage so interpretiert: Muss ich die durch die Erhöhung von α neuerlich angezeigten Ausreißer entfernen, damit die Konfidenzintervalle vertrauenswürdig(er) sind?

Hallo Micha, Deine Interpretation ist korrekt, so war das ursprünglich gemeint.

Bezogen auf das α ist diese Frage eindeutig zu verneinen, da α keinen Einfluss auf die Anzahl der Ausreißer im Datenbestand hat. Für vertrauenswürdige Konfidenzbereiche müssen schlicht die Ausreißer eliminiert sein.

Deine Message ist inzwischen bei mir angekommen - sorry, ich stand anfangs etwas auf der Leitung.

Der wahre Wert besitzt keine Wahrscheinlichkeit, er ist der wahre Wert.

Wikipedia weist auf diesen Fakt explizit hin: "Die häufig anzutreffende Formulierung, dass der wahre Wert mit 95 % Wahrscheinlichkeit im Konfidenzintervall liegt, d. h., im vorliegenden berechneten Intervall, ist streng genommen nicht korrekt, da der wahre Wert als gegeben (fix) und nicht stochastisch angenommen wird."

Die Formulierung "Wahrer Wert liegt mit 95% Wahrscheinlichkeit im Konfidenzintervall" mag ja etwas unpräzise sein. Ich würde daraus jedoch nicht gleich schließen, dass der wahre Wert in diesem Kontext als Zufallsvariable betrachtet werden soll, oder dass dem wahren Wert selbst eine Wahrscheinlichkeit zugeordnet werden soll, sondern vielmehr dem (positiven Ausgang des) zufälligen Ereignisses "Wahrer Wert liegt im Konfidenzintervall".

Die bspw. 5 % sagen aus, dass wenn Du Dein Messexperiment 100 mal wiederholst, dann liegt statistisch gesehen in 95 % der so gebildeten Konfidenzbereichen der wahre Wert und in 5 % der Fälle eben nicht.

Daraus folgt doch m.E., dass das zufällige Ereignis "wahrer Wert liegt (bei Ausführung eines Messexperiments) innerhalb des Konfidenzbereich" Bernoulli-verteilt ist, mit p=95%.

Viele Grüße
gf


Complete thread:

 RSS Feed of thread