Java·Applied·Geodesy·3D

Least-Squares Adjustment Software for Geodetic Sciences

Benutzer-Werkzeuge

Webseiten-Werkzeuge


least-squares-adjustment:observation

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
least-squares-adjustment:observation [2021/12/14 13:37] – Erläuterung zum stochastischen Modell Michael Löslerleast-squares-adjustment:observation [2022/11/30 14:06] (aktuell) Michael Lösler
Zeile 25: Zeile 25:
  
 JAG3D unterstützt eine integrierte, hybride 3D-Netzausgleichung für terrestrische Beobachtungen, Nivellements und GNSS-Beobachtungen. Hierbei berücksichtigt die Software eine mögliche Nichtparallelität zwischen den Stehachsen der (Stand-)Punkte infolge von vorhandenen Lotabweichungen (bzw. Stehachsrestneigungen).  JAG3D unterstützt eine integrierte, hybride 3D-Netzausgleichung für terrestrische Beobachtungen, Nivellements und GNSS-Beobachtungen. Hierbei berücksichtigt die Software eine mögliche Nichtparallelität zwischen den Stehachsen der (Stand-)Punkte infolge von vorhandenen Lotabweichungen (bzw. Stehachsrestneigungen). 
-Abbildung {{ref>jag3d_deflection_of_the_verticals}} zeigt schematisch den Zusammenhangzwischen dem einheitlich gewählten Datum, dem $x,y,z$-System, und dem jeweils lokalen $u,v,w$-System im Instrumentenstandpunkt. +Abbildung {{ref>jag3d_deflection_of_the_verticals}} zeigt schematisch den Zusammenhang zwischen dem einheitlich gewählten Datum, dem $x,y,z$-System, und dem jeweils lokalen $u,v,w$-System im Instrumentenstandpunkt. 
  
 Werden die Koordinatendifferenzen zwischen zwei Punkten mit Werden die Koordinatendifferenzen zwischen zwei Punkten mit
Zeile 84: Zeile 84:
  
 Das gemeinsame Datum kann durch einen Fundamentalpunkt (Principal Point) $\mathbf{P}_0$ definiert werden.  Das gemeinsame Datum kann durch einen Fundamentalpunkt (Principal Point) $\mathbf{P}_0$ definiert werden. 
-In diesem Fall sind für $\mathbf{P}_0$ die globalen geographischen Koordinaten $\lambda_0$ und $\phi_0$ vorzugeben, sodass die resultierende Ellipsoidnormale das lokale (tangentiale) Koordinatensystem definiert, welches durch $h_0$ ggf. noch entlang dieses Normalenvektors zu verschieben ist, siehe Abbildung {{ref>jag3d_local_ellipsoidal_Earth_model}}.+In diesem Fall sind für $\mathbf{P}_0$ die globalen geographischen Koordinaten $\lambda_0$ und $\phi_0$ vorzugeben, sodass die resultierende Ellipsoidnormale das lokale (tangentiale) Koordinatensystem in $\begin{pmatrix}x_0 & y_0 & z_0\end{pmatrix}^{\mathrm{T}}$ definiert, welches durch $N_0 + h_0$ ggf. noch entlang dieses Normalenvektors zu verschieben ist, siehe Abbildung {{ref>jag3d_local_ellipsoidal_Earth_model}}. Hierbei bezeichnet $N_0$ den Normalkrümmungsradius im senkrecht projizierten Fußpunkt von $\mathbf{P}_0$.
  
 Die $xyz$-Koordinaten in diesem Datum können durch die bekannte [[https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#From_ECEF_to_ENU|Umformung]] Die $xyz$-Koordinaten in diesem Datum können durch die bekannte [[https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#From_ECEF_to_ENU|Umformung]]
  
 $$\begin{pmatrix}y_i \\ x_i \\ z_i\end{pmatrix} = $$\begin{pmatrix}y_i \\ x_i \\ z_i\end{pmatrix} =
 +  \begin{pmatrix}
 +    y_0 \\
 +    x_0 \\
 +    z_0
 +  \end{pmatrix}
 +  +
   \begin{pmatrix}   \begin{pmatrix}
     -\sin\lambda_0 &            \cos\lambda_0           &         0 \\     -\sin\lambda_0 &            \cos\lambda_0           &         0 \\
Zeile 106: Zeile 112:
  
 ermittelt werden. Hierin sind $\mathbf{P}^{\mathrm{T}}_i = \begin{pmatrix}X & Y & Z\end{pmatrix}$ die globalen (geozentrischen) Koordinaten und $\begin{pmatrix}x & y & z\end{pmatrix}^{\mathrm{T}}$ die korrespondierenden lokalen Koordinaten des $i$-ten Punktes $\mathbf{P}_i$. ermittelt werden. Hierin sind $\mathbf{P}^{\mathrm{T}}_i = \begin{pmatrix}X & Y & Z\end{pmatrix}$ die globalen (geozentrischen) Koordinaten und $\begin{pmatrix}x & y & z\end{pmatrix}^{\mathrm{T}}$ die korrespondierenden lokalen Koordinaten des $i$-ten Punktes $\mathbf{P}_i$.
-Die beiden Winkel $\zeta_{x,i}$ und $\zeta_{y,i}$ beschreiben somit in diesem Koordinatensystem die Abweichungen zwischen der durch $\mathbf{P}_0$ definierten (lokalen) $z$-Achse und der jeweiligen Ellipsoidnormalen von $\mathbf{P}_i$. Für $\mathbf{P}_i$ müssen keine globalen geographischen Koordinaten bereitgestellt werden, da diese sich aus der inversen Umformung direkt ergeben.+Die beiden Winkel $\zeta_{x,i}$ und $\zeta_{y,i}$ beschreiben somit in diesem Koordinatensystem die Abweichungen zwischen der durch $\mathbf{P}_0$ definierten (lokalen) $z_0$-Achse und der jeweiligen Ellipsoidnormalen von $\mathbf{P}_i$. Für $\mathbf{P}_i$ müssen keine globalen geographischen Koordinaten bereitgestellt werden, da diese sich aus der inversen Umformung direkt ergeben.
  
 Wird ein lokales ellipsoidisches Koordinatensystem verwendet und zusätzlich $\zeta_{x,i}$ und $\zeta_{y,i}$ vorgegeben, so werden die theoretischen Winkel mit den vorgegebenen Winkeln akkumuliert in der Ausgleichung. Hierdurch ist es möglich, Lotabweichungen in der Ausgleichung zu berücksichtigen, die die Abweichungen zwischen den Ellipsoidnormalen und den jeweiligen lokalen Lotrichtungen beschreiben. Bitte beachte, dass die in der Erdmessung gebräuchlichen Lotabweichungsparameter $\xi$ und $\eta$ gegenüber den beiden Winkeln $\zeta_x$ und $\zeta_y$ einen anderen Drehsinn aufweisen. Es gilt $\zeta_x = \eta$ und $\zeta_y = -\xi$. Wird ein lokales ellipsoidisches Koordinatensystem verwendet und zusätzlich $\zeta_{x,i}$ und $\zeta_{y,i}$ vorgegeben, so werden die theoretischen Winkel mit den vorgegebenen Winkeln akkumuliert in der Ausgleichung. Hierdurch ist es möglich, Lotabweichungen in der Ausgleichung zu berücksichtigen, die die Abweichungen zwischen den Ellipsoidnormalen und den jeweiligen lokalen Lotrichtungen beschreiben. Bitte beachte, dass die in der Erdmessung gebräuchlichen Lotabweichungsparameter $\xi$ und $\eta$ gegenüber den beiden Winkeln $\zeta_x$ und $\zeta_y$ einen anderen Drehsinn aufweisen. Es gilt $\zeta_x = \eta$ und $\zeta_y = -\xi$.
least-squares-adjustment/observation.txt · Zuletzt geändert: 2022/11/30 14:06 von Michael Lösler