Java·Applied·Geodesy·3D

Least-Squares Adjustment Software for Geodetic Sciences

Benutzer-Werkzeuge

Webseiten-Werkzeuge


least-squares-adjustment:observation

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
least-squares-adjustment:observation [2021/07/01 13:42] – [Beobachtungen] Michael Löslerleast-squares-adjustment:observation [2022/11/30 14:06] (aktuell) Michael Lösler
Zeile 25: Zeile 25:
  
 JAG3D unterstützt eine integrierte, hybride 3D-Netzausgleichung für terrestrische Beobachtungen, Nivellements und GNSS-Beobachtungen. Hierbei berücksichtigt die Software eine mögliche Nichtparallelität zwischen den Stehachsen der (Stand-)Punkte infolge von vorhandenen Lotabweichungen (bzw. Stehachsrestneigungen).  JAG3D unterstützt eine integrierte, hybride 3D-Netzausgleichung für terrestrische Beobachtungen, Nivellements und GNSS-Beobachtungen. Hierbei berücksichtigt die Software eine mögliche Nichtparallelität zwischen den Stehachsen der (Stand-)Punkte infolge von vorhandenen Lotabweichungen (bzw. Stehachsrestneigungen). 
-Abbildung {{ref>jag3d_deflection_of_the_verticals}} zeigt schematisch den Zusammenhangzwischen dem einheitlich gewählten Datum, dem $x,y,z$-System, und dem jeweils lokalen $u,v,w$-System im Instrumentenstandpunkt. +Abbildung {{ref>jag3d_deflection_of_the_verticals}} zeigt schematisch den Zusammenhang zwischen dem einheitlich gewählten Datum, dem $x,y,z$-System, und dem jeweils lokalen $u,v,w$-System im Instrumentenstandpunkt. 
  
 Werden die Koordinatendifferenzen zwischen zwei Punkten mit Werden die Koordinatendifferenzen zwischen zwei Punkten mit
Zeile 84: Zeile 84:
  
 Das gemeinsame Datum kann durch einen Fundamentalpunkt (Principal Point) $\mathbf{P}_0$ definiert werden.  Das gemeinsame Datum kann durch einen Fundamentalpunkt (Principal Point) $\mathbf{P}_0$ definiert werden. 
-In diesem Fall sind für $\mathbf{P}_0$ die globalen geographischen Koordinaten $\lambda_0$ und $\phi_0$ vorzugeben, sodass die resultierende Ellipsoidnormale das lokale (tangentiale) Koordinatensystem definiert, welches durch $h_0$ ggf. noch entlang dieses Normalenvektors zu verschieben ist, siehe Abbildung {{ref>jag3d_local_ellipsoidal_Earth_model}}.+In diesem Fall sind für $\mathbf{P}_0$ die globalen geographischen Koordinaten $\lambda_0$ und $\phi_0$ vorzugeben, sodass die resultierende Ellipsoidnormale das lokale (tangentiale) Koordinatensystem in $\begin{pmatrix}x_0 & y_0 & z_0\end{pmatrix}^{\mathrm{T}}$ definiert, welches durch $N_0 + h_0$ ggf. noch entlang dieses Normalenvektors zu verschieben ist, siehe Abbildung {{ref>jag3d_local_ellipsoidal_Earth_model}}. Hierbei bezeichnet $N_0$ den Normalkrümmungsradius im senkrecht projizierten Fußpunkt von $\mathbf{P}_0$.
  
-Die $xyz$-Koordinaten in diesem Datum können durch die bekannte Umformung+Die $xyz$-Koordinaten in diesem Datum können durch die bekannte [[https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#From_ECEF_to_ENU|Umformung]]
  
-$$\begin{pmatrix}x_i \\ y_i \\ z_i\end{pmatrix} =+$$\begin{pmatrix}y_i \\ x_i \\ z_i\end{pmatrix} = 
 +  \begin{pmatrix} 
 +    y_0 \\ 
 +    x_0 \\ 
 +    z_0 
 +  \end{pmatrix} 
 +  +
   \begin{pmatrix}   \begin{pmatrix}
     -\sin\lambda_0 &            \cos\lambda_0           &         0 \\     -\sin\lambda_0 &            \cos\lambda_0           &         0 \\
-    -\sin\phi_0\cos\lambda_0 & -\sin\phi_r\sin\lambda_0 & \cos\phi_0 \\ +    -\sin\phi_0\cos\lambda_0 & -\sin\phi_0\sin\lambda_0 & \cos\phi_0 \\ 
-     \cos\phi_0\cos\lambda_0 &  \cos\phi_r\sin\lambda_0 & \sin\phi_0+     \cos\phi_0\cos\lambda_0 &  \cos\phi_0\sin\lambda_0 & \sin\phi_0
   \end{pmatrix}   \end{pmatrix}
   \begin{pmatrix}   \begin{pmatrix}
Zeile 105: Zeile 111:
 </figure> </figure>
  
-ermittelt werden. Hierin sind $\mathbf{P}^{\mathrm{T}}_i = \begin{pmatrix}X & Y & Z\end{pmatrix}$ die globalen (geozentirschen) Koordinaten und $\begin{pmatrix}x & y & z\end{pmatrix}^{\mathrm{T}}$ die korrespondierenden lokalen Koordinaten des $i$-ten Punktes $\mathbf{P}_i$. +ermittelt werden. Hierin sind $\mathbf{P}^{\mathrm{T}}_i = \begin{pmatrix}X & Y & Z\end{pmatrix}$ die globalen (geozentrischen) Koordinaten und $\begin{pmatrix}x & y & z\end{pmatrix}^{\mathrm{T}}$ die korrespondierenden lokalen Koordinaten des $i$-ten Punktes $\mathbf{P}_i$. 
-Die beiden Winkel $\zeta_{x,i}$ und $\zeta_{y,i}$ beschreiben somit in diesem Koordinatensystem die Abweichungen zwischen der durch $\mathbf{P}_0$ definierten (lokalen) $z$-Achse und der jeweiligen Ellipsoidnormalen von $\mathbf{P}_i$. Für $\mathbf{P}_i$ müssen keine globalen geographischen Koordinaten bereitgestellt werden, da diese sich aus der inversen Umformung direkt ergeben.+Die beiden Winkel $\zeta_{x,i}$ und $\zeta_{y,i}$ beschreiben somit in diesem Koordinatensystem die Abweichungen zwischen der durch $\mathbf{P}_0$ definierten (lokalen) $z_0$-Achse und der jeweiligen Ellipsoidnormalen von $\mathbf{P}_i$. Für $\mathbf{P}_i$ müssen keine globalen geographischen Koordinaten bereitgestellt werden, da diese sich aus der inversen Umformung direkt ergeben.
  
-Wird ein lokales ellipsoidisches Koordinatensystem verwendet und zusätzlich $\zeta_{x,i}$ und $\zeta_{y,i}$ vorgegeben, so werden die theoretischen Winkel mit den vorgegebenen Winkeln akkumuliert in der Ausgleichung. Hierdurch ist es möglich, Lotabweichungen in der Ausgleichung zu berücksichtigen, die die Abweichungen zwischen den Ellipsoidnormalen und den jeweiligen lokalen Lotrichtungen beschreiben.+Wird ein lokales ellipsoidisches Koordinatensystem verwendet und zusätzlich $\zeta_{x,i}$ und $\zeta_{y,i}$ vorgegeben, so werden die theoretischen Winkel mit den vorgegebenen Winkeln akkumuliert in der Ausgleichung. Hierdurch ist es möglich, Lotabweichungen in der Ausgleichung zu berücksichtigen, die die Abweichungen zwischen den Ellipsoidnormalen und den jeweiligen lokalen Lotrichtungen beschreiben. Bitte beachte, dass die in der Erdmessung gebräuchlichen Lotabweichungsparameter $\xi$ und $\eta$ gegenüber den beiden Winkeln $\zeta_x$ und $\zeta_y$ einen anderen Drehsinn aufweisen. Es gilt $\zeta_x = \eta$ und $\zeta_y = -\xi$.
  
-Das im Folgenden aufgeführte stochastische Modell wird herangezogen, wenn //keine// individuellen Genauigkeiten für die einzelnen Beobachtungen vorliegen. In diesem Fall greift der gruppenbasierte Ansatz. 
  
 ===== Terrestrische Beobachtungen ===== ===== Terrestrische Beobachtungen =====
  
-Im folgenden werden die terrestrischen Beobachtungsgleichungen, wie sie von JAG3D unterstützt werden, aufgeführt. Neben dem funktionalen Modell wird das stochastische Modell vorgestellt und mögliche Gruppenparameter, die wahlweise als zusätzliche Unbekannte geschätzt werden können, genannt.+Im Folgenden werden die terrestrischen Beobachtungsgleichungen, wie sie von JAG3D unterstützt werden, aufgeführt. Neben dem funktionalen Modell wird das stochastische Modell vorgestellt und mögliche Gruppenparameter, die wahlweise als zusätzliche Unbekannte geschätzt werden können, genannt. Das aufgeführte stochastische Modell wird herangezogen, wenn //keine// individuellen Genauigkeiten für die einzelnen Beobachtungen vorliegen. Nur in diesem Fall greift der hier gezeigte gruppenbasierte Ansatz.
  
 //Hinweis:// Das stochastische Modell setzt sich stets aus einem konstanten und zwei entfernungsabhängigen Anteilen zusammen. Für die entfernungsabhängigen Anteilen muss die Zielweite $d$ gegeben sein. Sollte $d$ nicht explizit vorliegen, berechnet JAG3D die Zielweite näherungsweise aus den Näherungskoordinaten. In Abhängigkeit der Güte der Näherungskoordinaten kann das stochastische Modell daher variieren, sodass die explizite Vorgabe der Zielweite empfohlen wird. //Hinweis:// Das stochastische Modell setzt sich stets aus einem konstanten und zwei entfernungsabhängigen Anteilen zusammen. Für die entfernungsabhängigen Anteilen muss die Zielweite $d$ gegeben sein. Sollte $d$ nicht explizit vorliegen, berechnet JAG3D die Zielweite näherungsweise aus den Näherungskoordinaten. In Abhängigkeit der Güte der Näherungskoordinaten kann das stochastische Modell daher variieren, sodass die explizite Vorgabe der Zielweite empfohlen wird.
Zeile 154: Zeile 159:
 ^ Punktdimension | 3D  | ^ Punktdimension | 3D  |
 ^ Zusatzparameter | Refraktionskoeffizient $k$ | ^ Zusatzparameter | Refraktionskoeffizient $k$ |
-(Bemerkung: $R = 6371~\rm{km}$ entspricht dem mittleren Erdradius)+(Bemerkung: $R$ entspricht dem Erdradius an der geographischen Breite $\phi_0$ von $\mathbf{P}_0$)
  
 ===== GNSS-Basislinien ===== ===== GNSS-Basislinien =====
least-squares-adjustment/observation.1625139751.txt.gz · Zuletzt geändert: 2021/07/01 13:42 von Michael Lösler