Java·Applied·Geodesy·3D

Least-Squares Adjustment Software for Geodetic Sciences

Benutzer-Werkzeuge

Webseiten-Werkzeuge


least-squares-adjustment

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
least-squares-adjustment [2022/09/21 17:27] – [Parameterschätzung] Michael Löslerleast-squares-adjustment [2023/08/10 16:03] (aktuell) – [Parameterschätzung] Michael Lösler
Zeile 31: Zeile 31:
 ===== Funktionales Modell ===== ===== Funktionales Modell =====
  
-Neben dem stochastischen Modell existiert das funktionale oder mathematische Modell der Ausgleichung. In diesem wird der lineare bzw. [[#linearisierung_der_beobachtungsgleichungen|linearisierte Zusammenhang]] zwischen den (gekürzten) [[least-squares-adjustment:observation|Beobachtungen]] $\mathbf{l}$ und den zu schätzenden Unbekannten $\mathbf{\hat x}$ abgebildet+Neben dem stochastischen Modell existiert das funktionale oder mathematische Modell der Ausgleichung. In diesem wird der lineare bzw. [[#linearisierung_der_beobachtungsgleichungen|linearisierte Zusammenhang]] zwischen den (gekürzten) [[least-squares-adjustment:observation|Beobachtungen]] $\mathbf{l}$ und den zu schätzenden (Zuschlägen der) Unbekannten $\mathbf{\hat x}$ abgebildet
  
 $$\mathbf{l} + \mathbf{v} = \mathbf{\hat{l}} = \mathbf{A\hat{x}}$$ $$\mathbf{l} + \mathbf{v} = \mathbf{\hat{l}} = \mathbf{A\hat{x}}$$
Zeile 55: Zeile 55:
 $$\mathbf{n} = \mathbf{A^TPl}$$ $$\mathbf{n} = \mathbf{A^TPl}$$
  
-Durch Inversion der Normalgleichungsmatrix $\mathbf{N}$ erhält man den Lösungsvektor $\mathbf{\hat x}$ der unbekannten Parameter+Durch Auflösen des Normalgleichungssystems nach $\mathbf{\hat x}$ ergibt sich der Lösungsvektor der unbekannten Parameter
  
 $$\mathbf{\hat{x}} = \mathbf{N^{-1}n}$$ $$\mathbf{\hat{x}} = \mathbf{N^{-1}n}$$
Zeile 118: Zeile 118:
 gilt. gilt.
  
-Liegt die erste Näherung bereits sehr dich am Optimum, so sind nur wenige Iterationsschritte nötig um eine Lösung zu erzielen. Bei schlecht gewählten Näherungen sind entsprechend mehr Iterationen notwendig. Im ungünstigsten Fall divergiert das Gleichungssystem bei schlecht gewählten Näherungswerten sogar und liefert eine falsche oder keine Lösung. Die Güte der [[user-interface:pre-processing#bestimmung_von_naherungskoordinaten|Näherungskoordinaten]] ist somit entscheidend für das Konvergenzverhalten.+Liegt die erste Näherung bereits sehr dicht am Optimum, so sind nur wenige Iterationsschritte nötigum eine Lösung zu erzielen. Bei ungünstig gewählten Näherungswerten sind entsprechend mehr Iterationen notwendig. Im ungünstigsten Fall divergiert das Gleichungssystem sogar und liefert eine falsche bzw. unbrauchbare Lösung. Die Güte der [[user-interface:pre-processing#bestimmung_von_naherungskoordinaten|Näherungskoordinaten]] ist somit entscheidend für das Konvergenzverhalten.
least-squares-adjustment.1663774048.txt.gz · Zuletzt geändert: 2022/09/21 17:27 von Michael Lösler