Java·Applied·Geodesy·3D

Least-Squares Adjustment Software for Geodetic Sciences

Benutzer-Werkzeuge

Webseiten-Werkzeuge


least-squares-adjustment:reliability

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
least-squares-adjustment:reliability [2025/03/15 10:46] – [Einfluss auf die Punktlage] Michael Löslerleast-squares-adjustment:reliability [2025/08/01 11:41] (aktuell) – [Genauigkeitsmaße der Parameter] Michael Lösler
Zeile 19: Zeile 19:
 $$\rho = \frac{q_{ij}}{\sqrt{q_{ii} \cdot q_{jj}}}$$ $$\rho = \frac{q_{ij}}{\sqrt{q_{ii} \cdot q_{jj}}}$$
  
-Während für $\rho \gt 0$ eine positive Korrelation besteht, sind die Parameter für $\rho \lt 0$ negativ korreliert. Für $\rho = 0$ sind die Parameter vollständig (linear) unabhängig.+Während für $\rho \gt 0$ eine positive Korrelation besteht, d.h. tendenziell fallen bzw. steigen beide Parameter gemeinsam, sind die Parameter für $\rho \lt 0$ negativ korreliert, d.h. tendenziell steigt einer der beiden Parameter an während der andere abfällt. Für $\rho = 0$ sind die Parameter vollständig (linear) unabhängig, d.h. die Änderung eines Parameters wirkt sich nicht auf den anderen aus.
  
 Die geschätzten Standardunsicherheiten $\sigma$ der Parameter z.B. der ausgeglichenen Koordinaten eines Punktes können demnach direkt aus der Varianz-Kovarianz-Matrix abgelesen werden. Zu beachten ist, dass die Varianz-Kovarianz-Matrix datumsabhängig ist. Dies bedeutet, dass bspw. die Standardunsicherheiten $\sigma$ nicht invariant gegenüber Netzverdrehungen sind und sich daher nur bedingt zur Genauigkeitsbeurteilung eignen. Ein punktbezogenes rotationsinvariantes Genauigkeitsmaß sind hingegen die Halbachsen der Konfidenzbereiche.  Die geschätzten Standardunsicherheiten $\sigma$ der Parameter z.B. der ausgeglichenen Koordinaten eines Punktes können demnach direkt aus der Varianz-Kovarianz-Matrix abgelesen werden. Zu beachten ist, dass die Varianz-Kovarianz-Matrix datumsabhängig ist. Dies bedeutet, dass bspw. die Standardunsicherheiten $\sigma$ nicht invariant gegenüber Netzverdrehungen sind und sich daher nur bedingt zur Genauigkeitsbeurteilung eignen. Ein punktbezogenes rotationsinvariantes Genauigkeitsmaß sind hingegen die Halbachsen der Konfidenzbereiche. 
Zeile 71: Zeile 71:
 |  3  |  19,87 %  | |  3  |  19,87 %  |
  
-Aufgrund der geringen Sicherheitswahrscheinlichkeit des einfachen Konfidenzbereichs von 40 % bzw. 20 % für einen Lage- bzw. Raumpunkt, werden die Halbachsen i.d.R. unter der Annahme der Normalverteilung mit einem Quantil der Fisher-Verteilung skaliert, sodass sich ein vergrößerter Konfidenzbereich mit einer entsprechend höheren Sicherheitswahrscheinlichkeit ergibt. In JAG3D wird die Sicherheitswahrscheinlichkeit $\left(1 - \alpha\right)$ als Gegenwahrscheinlichkeit aus der gewählten (und ggfabgestimmten) [[:least-squares-adjustment:outlier#teststatistik|Irrtumswahrscheinlichkeit]] $\alpha$ abgeleitet. +Aufgrund der geringen Sicherheitswahrscheinlichkeit des einfachen Konfidenzbereichs von 40 % bzw. 20 % für einen Lage- bzw. Raumpunkt, werden die Halbachsen i.d.R. unter der Annahme der Normalverteilung mit einem Quantil der Fisher-Verteilung skaliert, sodass sich ein vergrößerter Konfidenzbereich mit einer entsprechend höheren Sicherheitswahrscheinlichkeit ergibt. In JAG3D wird die Sicherheitswahrscheinlichkeit bzwdas [[user-interface:settings#ausgleichungseinstellungen|Konfidenzniveau]] $\left(1 - \alpha\right)vom Anwender vorgegeben. Die Längen der Halbachsen des Konfidenzbereichs hängen somit von der Sicherheitswahrscheinlichkeit und vom gewählten Varianzfaktor ab. Für a-priori Varianzfaktor-bezogene Konfidenzbereiche gilt für die Halbachsen 
-Die Längen der Halbachsen des Konfidenzbereichs hängen somit von der Sicherheitswahrscheinlichkeit und vom gewählten Varianzfaktor ab. Für a-priori Varianzfaktor-bezogene Konfidenzbereiche gilt für die Halbachsen +
    
 $$\sqrt{\sigma_0^2 \cdot \lambda \cdot n \cdot F_{n,\infty}}$$ $$\sqrt{\sigma_0^2 \cdot \lambda \cdot n \cdot F_{n,\infty}}$$
least-squares-adjustment/reliability.1742032001.txt.gz · Zuletzt geändert: 2025/03/15 10:46 von Michael Lösler